COMBINATIONS (from several sets)

1. In how many ways can 3 math books and 2 science books be selected from a set of 12 math books and 9 science books, all different?

$\underline{12\cdot 11\cdot 10}$	9.8	$\underline{12 \cdot 11 \cdot 10}$	$\frac{9 \cdot 8}{2} = 220 \cdot 36$
3!	2!	$3 \cdot 2 \cdot 1$	$\frac{1}{2 \cdot 1} = 220 \cdot 30$

2. In how many ways can a committee be formed containing three girls and two boys from a group containing ten girls and twelve boys?

$10 \cdot 9 \cdot 8$	$\frac{12 \cdot 11}{2}$	$-\frac{10\cdot9\cdot8}{0}$	$12 \cdot 11$	-120.66
3!	2!	$3 \cdot 2 \cdot 1$	$2 \cdot 1$	- 120 * 00

3. In how many ways can a person select a path from A to B and a path from B to C if there are nine paths to chose from A to B and five from B to C?

$$\frac{9}{1!} \cdot \frac{5}{1!} = 9 \cdot 5$$

4. In how many ways can a student select 4 short answer and three long answer questions on a test from 6 short answer and 5 long answer?

 $\frac{6 \cdot 5 \cdot 4 \cdot 3}{4!} \cdot \frac{5 \cdot 4 \cdot 3}{3!} = \frac{6 \cdot 5 \cdot 4 \cdot 3}{4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1} = 15 \cdot 10$

- 5. In how many ways can a ten card be dealt so that it contains exactly five hearts and 5 spades? $\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{5!} \cdot \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{5!} = \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} = 252 \cdot 252$
- 6. How many 12 card hands can be dealt that contain exactly 8 spades?

$\underline{13} \cdot \underline{12} \cdot \underline{11} \cdot \underline{10} \cdot 9 \cdot 8 \cdot 7 \cdot 6$	$39 \cdot 38 \cdot 37 \cdot 36$	$\underline{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}$	$\frac{39 \cdot 38 \cdot 37 \cdot 36}{2}$	
8!	4!	$-\frac{1}{8\cdot7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1}$	$4 \cdot 3 \cdot 2 \cdot 1$	-
1,287 · 82,251				

7. How many 13 card hands can be dealt that containing exactly 3 queens, 2 kings, 2 aces and 3 nines?

 $\frac{4 \cdot 3 \cdot 2}{3!} \cdot \frac{4 \cdot 3}{2!} \cdot \frac{4 \cdot 3}{2!} \cdot \frac{4 \cdot 3 \cdot 2}{3!} \cdot \frac{40 \cdot 39 \cdot 38}{3!} = \frac{4 \cdot 3 \cdot 2}{3 \cdot 2 \cdot 1} \cdot \frac{4 \cdot 3}{2 \cdot 1} \cdot \frac{4 \cdot 3}{2 \cdot 1} \cdot \frac{4 \cdot 3 \cdot 2}{3 \cdot 2 \cdot 1} \cdot \frac{40 \cdot 39 \cdot 38}{3 \cdot 2 \cdot 2} = 4 \cdot 6 \cdot 6 \cdot 4 \cdot 9,880$

- 8. In how many ways can a person select a pair of pants from six pants, a pair of shoes from 3 pairs of shoes, and a hat from 10 hats?
 - $\frac{6}{1!} \cdot \frac{3}{1!} \cdot \frac{10}{1!} = 6 \cdot 3 \cdot 10$
- 9. In how many ways can you select 3 consonants and 4 vowels from the letters in the alphabet? $\frac{21 \cdot 20 \cdot 19}{21 \cdot 20 \cdot 19} \cdot \frac{5 \cdot 4 \cdot 3 \cdot 2}{21 \cdot 20 \cdot 19} \cdot \frac{5 \cdot 4 \cdot 3 \cdot 2}{21 \cdot 20 \cdot 19} = 1.330 \cdot 5$

$$\underbrace{3!}_{3!} \cdot \underbrace{4!}_{4!} = \underbrace{3 \cdot 2 \cdot 1}_{3 \cdot 2 \cdot 1} \cdot \underbrace{4 \cdot 3 \cdot 2 \cdot 1}_{4 \cdot 3 \cdot 2 \cdot 1} = 1,330 \cdot 5$$

10. In how many ways can you select 2 even and three odd digits from the digits 0, 1, 2, ..., 9? 5 $\cdot 4$ 5 $\cdot 4 \cdot 3$ 5 $\cdot 4$ 5 $\cdot 4 \cdot 3$

$\frac{5 \cdot 4}{}$	5.4.5	$-\frac{5\cdot 4}{-}$.	$\frac{3\cdot 4\cdot 3}{2}$	-10.10
2!	3!	2.1	$3 \cdot 2 \cdot 1$	- 10 10

- 11. In how many ways can you select 2 vowels and 2 consonants from the word "numbers"? $\frac{2 \cdot 1}{2!} \cdot \frac{5 \cdot 4}{2!} = \frac{2 \cdot 1}{2 \cdot 1} \cdot \frac{5 \cdot 4}{2 \cdot 1} = 1 \cdot 10$
- 12. In how many ways can a male leading role, a female leading role, 2 supporting males and 3 supporting females be selected from a group containing nine females and 12 males? $\frac{12}{1!} \cdot \frac{9}{1!} \cdot \frac{11 \cdot 10}{2!} \cdot \frac{8 \cdot 7 \cdot 6}{3!} = \frac{12}{1} \cdot \frac{9}{1} \cdot \frac{11 \cdot 10}{2 \cdot 1} \cdot \frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1} = 12 \cdot 9 \cdot 55 \cdot 56$
- 13. A bridge hand has thirteen cards of each suit. How many thirteen-card hands having exactly eight clubs can be dealt? How many hands having exactly 2 hearts, 5 clubs, 4 spades and 2 diamonds are there?

a)
$$\frac{\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{8!}{\frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6}{8!} \cdot \frac{39 \cdot 38 \cdot 37 \cdot 36 \cdot 35}{5!} = 1,287 \cdot 575,757$$
b)
$$\frac{\frac{13 \cdot 12}{2!} \cdot \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{5!}{\frac{5!}{2!} \cdot \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{5!} \cdot \frac{13 \cdot 12 \cdot 11 \cdot 10}{4!} \cdot \frac{13 \cdot 12}{2!} = \frac{13 \cdot 12 \cdot 11 \cdot 10 \cdot 9}{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{13 \cdot 12 \cdot 11 \cdot 10}{4 \cdot 3 \cdot 2 \cdot 1} \cdot \frac{13 \cdot 12}{2 \cdot 1} = 78 \cdot 1,287 \cdot 715 \cdot 78$$

- 14. From a group of 6 men and eight women, how many committees of 3 men and 2 woman can be formed?
 - $\frac{6 \cdot 5 \cdot 4}{3!} \cdot \frac{8 \cdot 7}{2!} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} \cdot \frac{8 \cdot 7}{2 \cdot 1} = 20 \cdot 28$
- 15. A bag contains 4 red, 6 white and five blue marbles. How many ways can 2 red, 3 white and 3 blue be chosen?

 $\frac{4 \cdot 3}{2!} \cdot \frac{6 \cdot 5 \cdot 4}{3!} \cdot \frac{5 \cdot 4 \cdot 3}{3!} = \frac{4 \cdot 3}{2 \cdot 1} \cdot \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} \cdot \frac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1} = 6 \cdot 20 \cdot 10$

- 16. In how many ways can you select three letters from the word "study" and two letters from the word "charge"?
 - $\frac{5 \cdot 4 \cdot 3}{3!} \cdot \frac{6 \cdot 5}{2!} = \frac{5 \cdot 4 \cdot 3}{3 \cdot 2 \cdot 1} \cdot \frac{6 \cdot 5}{2 \cdot 1} = 10 \cdot 15$